Pour célébrer les 150 ans de l'École Centrale de Lyon

Cycle : Énergie : quelles nouvelles techniques ?

www.efferve-sciences.ec-lyon.fr

LYON, 15 Novembre 2007

Stockage Electrochimique de l'énergie électrique

FAUVARQUE J. F Professeur émérite

Laboratoire d'Electrochimie Industrielle

CNAM, 2 rue Conté, 75003 PARIS. Tél : 01 40 27 24 20 fauvarqu@cnam.fr

RESUME

- Problème général du stockage de l'énergie
- Les générateurs électrochimiques
- Les batteries
- Les piles à combustible
- Les systèmes Redox
- Conclusions

Stockage de l'énergie

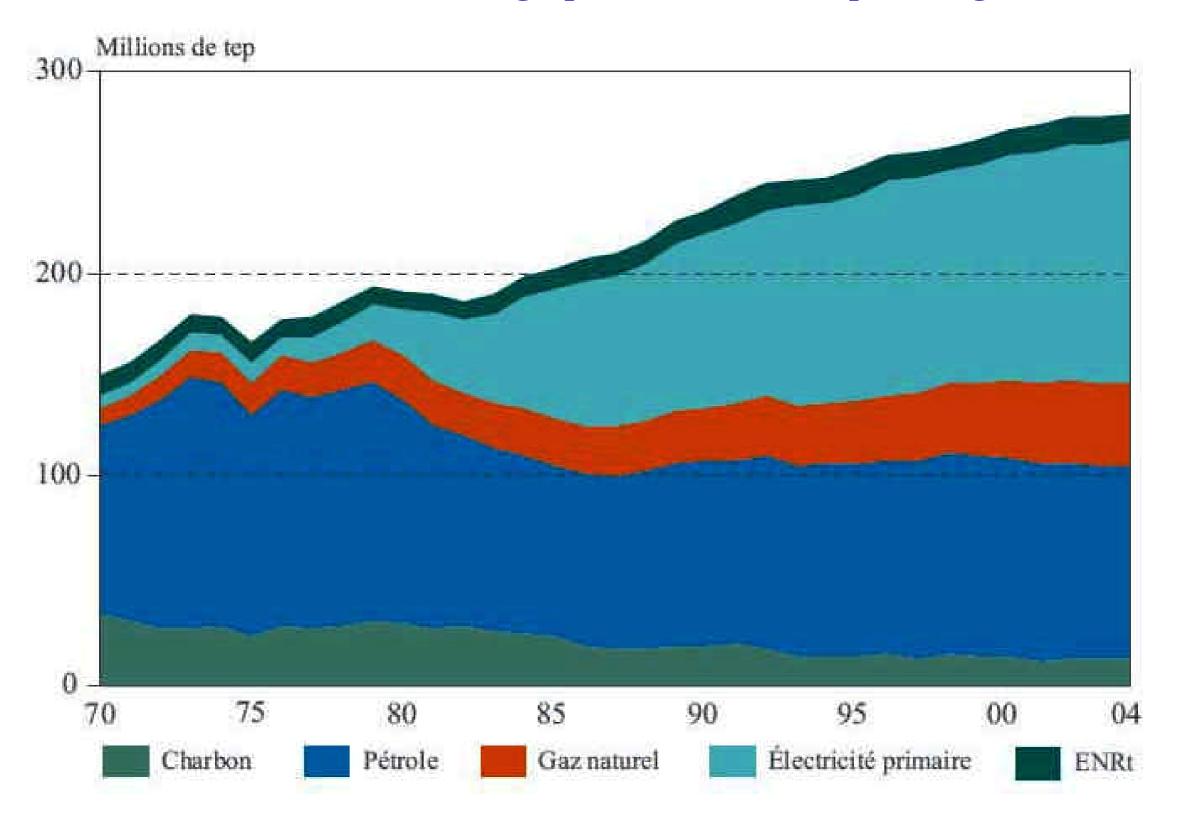
L'énergie solaire a été stockée par les plantes sous forme de :

combustible (hydrates de carbone transformés en charbon, pétrole, etc...)

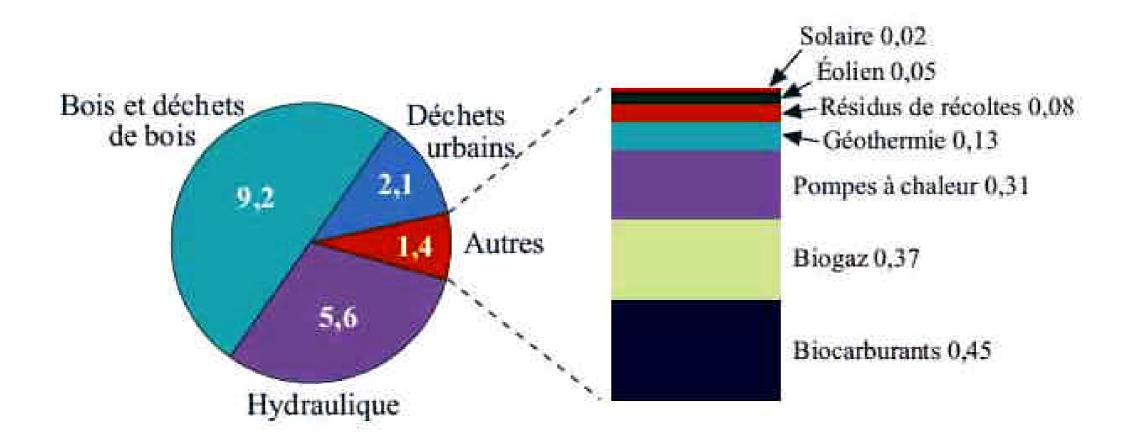
et d'oxygène, véritable agent du stockage grâce à sa structure électronique triplet.

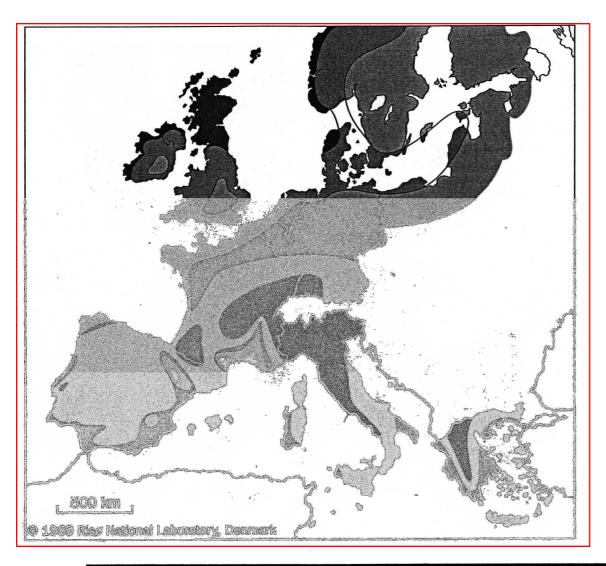
- -L'énergie solaire fournit encore la majeure partie des énergies dites « renouvelables » : biomasse, hydraulique, thermique solaire, photovoltaïque, éolien,...mais les rendements énergétiques sont faibles.
- -L'électricité d'origine nucléaire est produite de façon économique et les excédents en heures creuse méritent d'être stockés.

Lyon, 15 novembre 2007


Consommation annuelle planétaire (en 1998)

Sources	GTep*	%
Charbon	2,22	21,4
Pétrole	3,39	32,7
Gaz	2,02	19,5
Hydraulique	0,69	6,7
Traditionnel **	1,20	11,6
Nucléaire	0,63	6,1
Renouvelables	0,21	2,0
Total	10,36	100


^{*}Gtep: 1 milliard de Tonnes équivalents pétrole.

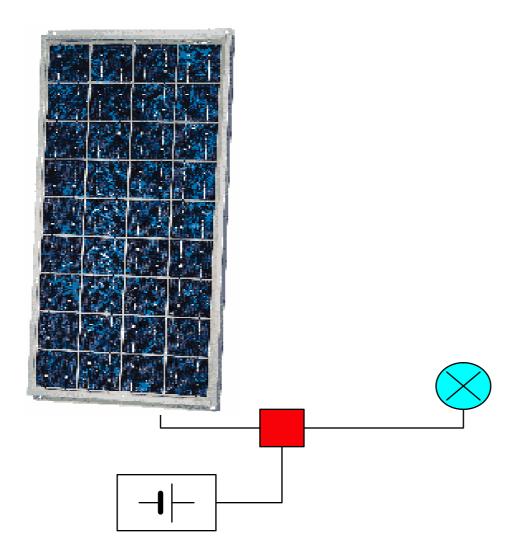

^{**}Exploitation de la biomasse, essentiellement le bois.

Consommation d'énergie primaire en France par énergie

Production d'énergies renouvelables par filière en 2004

Carte des vents dans l'Europe de l'Ouest

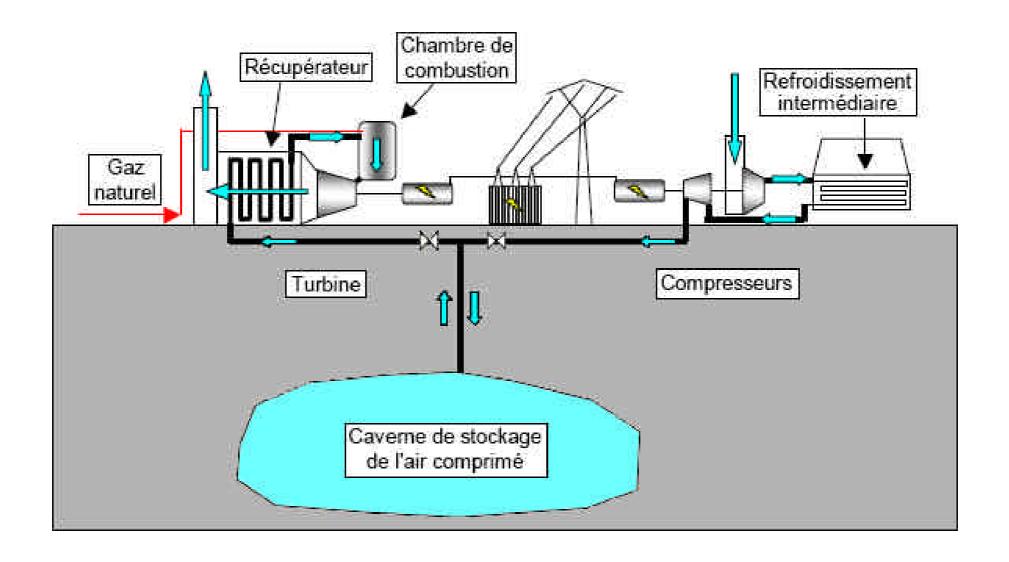
Etablie par le laboratoire danois de Riso


Le tableau explique les conventions de couleur

Dans la même zone la vitesse du vent est d'autant plus grande que la rugosité est faible

	Terrair	n abrité	Plaine	ouverte	Bord o	de mer	Plein	e mer	Cre	êtes
	m . s ⁻¹	W. m ⁻²	m . s ⁻¹	W. m ⁻²	m.s ⁻¹	W. m ⁻²	m.s ⁻¹	W. m ⁻²	m.s ⁻¹	W. m ⁻²
V	>6,0	> 250	> 7.5	> 500	> 8,5	> 700	> 9.0.	> 800	>11,5	> .1800
	5,0-6,0	150-250	8,5-7,5	300-500	7,0-8,5	400-700	8,0-9,0	600-800	10,0-11,5	1200-1800
	4,5-5,0	100-150	5,5-6,5	200-300	6,0-7,0	250-400	7,0-8,0	400-600	8,5-10,0	700-1200
	3,54,5	50-100	4,5-5,5	100-200	5,0-6,0	150-250	5,5-7,0	200-400	7,0-8,5	400-700
	< 3,5	< 50	₹4,5	< 100	< 5,0	< 150	< 5,5	< 200	< 7.0	< 400

Schéma de principe d'un stockage photovoltaïque


Electricité photovoltaïque annuelle produite par une surface de 10 m2 (1 kWC)en toit ou façade selon le site, en kWh/an [source EDF]

Site	Inclinaison	Façade
Lille	914	673
Nice	1486	1078
Antilles	1488	890

Stockage de l'énergie

- Energie chimique.
- Energie gravitationnelle: Barrage.
 - Peu de localisations
- Energie pneumatique : air comprimé.
 - Pertes de l'énergie thermique
- Energie thermique: eau chaude, vapeur...
 - Non transportable
- Energie cinétique : volants d'inertie.
 - Pièces mobiles
- Energie électrique : condensateurs, selfs.
 - Courants alternatifs

L'énergie chimique

Certains corps réag issent **ensemble** pour en donner d'autres avec libération d'énergie.

(chaleur)

Il faut 150 Wh pour parcourir 1 km avec une voiture légère (1000 kg en charge), Quelle est votre consommation ? votre product ion de CO2 au km?

D'où vient cette énergie ?

hydrates de carbone, êtres vivants.

Dans le sol : hydrates de carbone + bactéries

tourbe, pétrole, charbon, méthane,...

Où est stockée l'énergie solaire ? dans le pétrole, ou dans l'oxygène de l'air ? Réponse : dans l'oxygène, le pétro le n'est qu'un déchet produit par les bactéries !

L'énergie électrique

Tout ce qu i crée une force sur un sys tème capable de se dép lacer peut fourn ir une énerg ie.

Défin ition de l'ampère : 2 conducteu rs paral lèle s à 1 m de dis tance, par courus par un couran t de 1 ampère sub issent une force de 2.10 exp-7 ne w ton par mè tre.

L'ampère es t un courant , déplace ment d'une charge éle ctrique le cou lomb: 1A=1 C/s Le cou rant passe dans un conduc teur quand il exis te une différence de potentiel en tre 2 point s du conducteu r, uni té le volt tel que 1 volt * 1 amp ère =1 w at 1 kW =4,5 A *220 V

La conve rsion réc iproque de l'én ergie élec trique en énerg ie m écanique peu t se fa ire avec de bon s rende m ent s > 90%.

L'én ergie élec trique est presque exclu sive ment lié e au couran t:

l'énergi e électr ique ne se stocke pas (ou très mal)

Les batterie s son t de s conve rtisseur s révers ibles d'énergie éle ctrique en énerg ie chimique.

Stockage de l'énergie électrique

- L'énergie électrique transportée est le produit d'un courant par une tension.
- Un courant ne se stocke pas.
- La solution : conversion réciproque de l'énergie électrique en énergie chimique :
 - Accumulateurs électrochimiques
 - Electrolyse + pile à combustible
 - Systèmes Redox

Accumulateurs électrochimiques

- Puissance électrique disponible sans délai;
- Modifiable à volonté (dans la limite de Pmax)
- Possibilité de boîtiers étanches.
- Transportables
- Pas de pièces mobiles :
 - Pas de bruit, discrétion
 - Pas d'usure mécanique
 - Mais Energies massiques et volumiques limitées

La réaction de décharge

Deux réactions électrochimiques

Une réduction : $Ox_1 + n e^{-}$

Red₁

avec $\mathbf{E}_1 = -? \mathbf{G}_1 / \mathbf{n} \mathbf{F}$

Une oxydation: Red₂

 $Ox_2 + n e^-$ avec $E_2 = +?G_2/nF$

Soit la réaction globale

 $Ox_1 + Red_2$

 $Red_1 + Ox_2$ avec E = -?G/nF

Exemple, 1'accumulateur au plomb

$$PbO_2 + 4 H^+ + SO_4^{2-} + 2 e^ PbSO_4 + 2 H_2O$$
 $E_1^0 = 1,685 V$

$$PbSO_4 + 2 H_2C$$

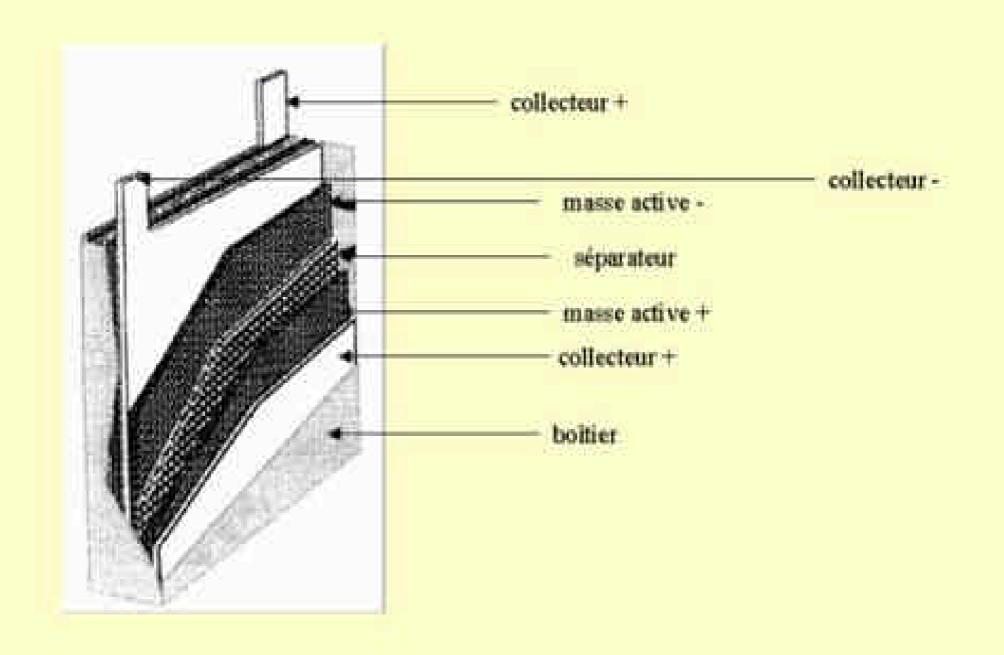
$$E_{1}^{0} = 1,685 \text{ V}$$

$$Pb + SO_4^{2-}$$

$$PbSO_4 + 2 e^ E^0_2 = -0.356 V$$

$$E_{2}^{0} = -0.356 \text{ V}$$

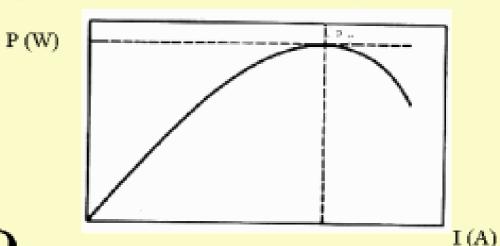
Soit une tension totale de 2,041 V par élément


Les matières contenant les couples Redox sont appelées masses actives et doivent assurer la conduction ionique, la conduction électronique et le transfert de matière. La double percolation ionique et électronique doit être conservée au cours des cycles.

Constitution et caractéristiques des générateurs électrochimiques

Montage prismatique:

assemblage en peigne de n électrodes;


⇒ séquence : col.+/MA+/sep./MA-/col.-/MA-/(...)/sep./MA+/col.+

Constitution et caractéristiques des générateurs électrochimiques

3- La puissance P

 $P = U \cdot I$; unité : le watt (W)

- à I = 0, P = 0
 - à I max, on a U = 0 (voir la courbe de polarisation)
- ⇒ P passe par un maximum

• lorsque
$$U = U_0 / 2$$
, c
$$P_{---} = \frac{U_0^2}{}$$

avec Un: différence de potentiel à courant nul (fem)

R: résistance interne du générateur

U: tension aux nomes du générateur telle que

 $U=U_0-RI$

- au delà de Pmax, I est instable :
- si on veut dépasser Ilim, la puissance diminue
- à U=U₀/2, la moitié de l'énergie est perdue en chaleur

⇒ toujours travailler à P < 3/4Pmax

Ex: pile Leclanché $U_0 = 1,6 \text{ V}$ utilisation à U = 1,2 V

Les piles et batteries d'accumulateurs

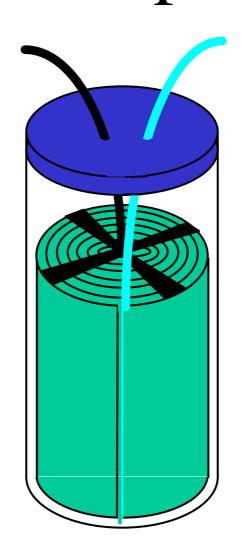

- Plomb acide sulfurique
- Nickel-Cadmium
- Nickel-Hydrure
- Lithium-ion
- Lithium-polymère
- Zébra
- Pile à combustible

Tableau comparatif

	Wh/kg	W/kg (pic, 80%)	Cycles	Coût	Etat
Pb-Acide	35/50	80/100	400/700	f/m	Com.
Ni-Cd	40/60	150/200	> 1000	m	Com.
Ni-MH	60/80	130/180	> 1000	m	Com.
Na-NiCl ₂	80/90	100/150	> 1000	m/h	Dév.
Li-ion	100/120	150/250	> 1000	h	Com.
Li-ESP	40/60	50/100	400/600	m/h	R & D
PAC	-	100/300	-	h	R & D

F = faible m = moyen e = élevé

Accumulateur au plomb Planté à électrodes spiralées

Batteries au plomb Démarrage, Stationnaires, Spiralées

Plomb-Acide

Coût faible Fabrication bien connue Bonne cyclabilité en ouvert

mais

Énergie massique limitée (30/50 Wh/kg) Cyclabilité fonction de la profondeur de décharge Cyclabilité moyenne en étanche

Accumulateurs alcalins

- Nickel -cadmium
- Nickel métal hydrure
- Nickel -zinc
- Argent -zinc
- Nickel hydrogène haute pression

Nickel-Cadmium

Bonne cyclabilité / durée de vie Fabrication bien connue

mais

Coût assez élevé Énergie massique limitée (40/60 Wh/kg) Utilisation de cadmium

Nickel-Hydrure métallique

Bonne cyclabilité / durée de vie Fabrication semblable à celle du Ni-Cd Bonne énergie volumique (150/200 Wh/l) Énergie massique moyenne (60/80 Wh/kg)

mais

Coût assez élevé Puissance limitée aux basses températures

Batteries lithium-ion

- Négative : lithium inséré dans du carbone
- Positive : oxyde métallique lithié
- Très bonne énergie massique, mais coûteux
- Applications : Electronique portable
 - Li_x Co O2, Li (Mn Ni Co) O2
 - Instables à chaud
 - LixFePO4
 - Puissance limitée

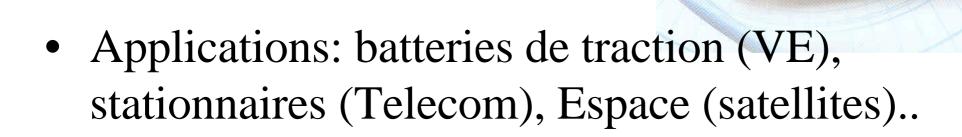
Lithium-ion

Bonne cyclabilité / durée de vie Bonne énergie volumique (150/200 Wh/l) Bonne énergie massique (100/120 Wh/kg)

mais

Coût élevé Conception de batterie sécurisée nécessaire

La technologie Li ion



Lithium Ion Industriel, série VE: Energie

• Eléments de forte énergie: 20 à 40 Ah

150Wh/kg

Elément		VL E	VL 27 M
Tension moyenne	V	3.55	3.55
Capacité C/3	Ah	45	27
Dimensions (Æ/h)	mm	54 / 222	54 / 163
Masse	kg	1.07	0.77
Energie Specifique	Wh/kg	150	130
Puissance spécifique déchargé à 80%	W/kg	420	550
Densité d'énergie	Wh/dm ³	310	275

Batteries chaudes

- Lithium-aluminium /sulfure de fer
- Séparateur en céramique conductrice Na+
 - Sodium -soufre
 - Sodium Chlorure de Nickel (Zébra)

Batteries sodium soufre

Zébra

Bonne cyclabilité (> 1000 cycles) Bonne énergie massique (80/100 Wh/kg)

mais

Fonctionnement à 250/350°C Coût élevé difficile à réduire

Electrolyse et Piles à combustible

- Electrolyse, 1,5 à 2 volts/cellule
 - Alcaline
 - Acide à membrane
 - Haute température
- Pile à combustible, 0,7 à 1 volt/cellule
 - (selon le régime)
 - Rendement : 30 à 70 %

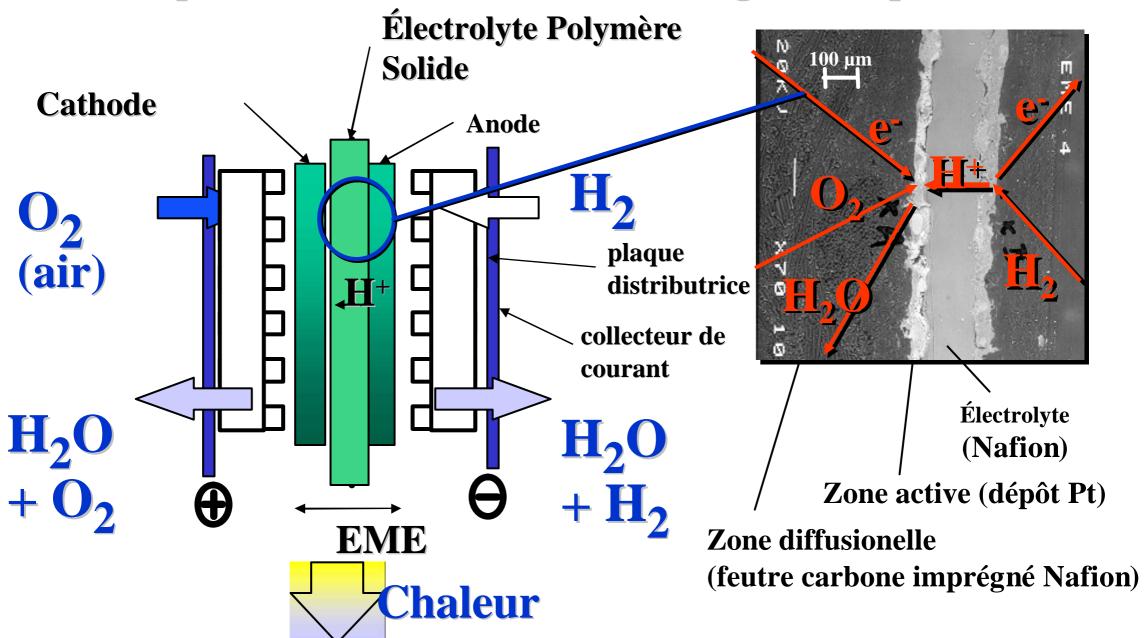
Piles à combustible

Filières	$\mathbf{t}_{\text{fonctionnement}}$ $(^{\circ}\mathbf{C})$	Electrolyte	Application
Alcaline AFC	60	KOH (aqueux)	Espace (depuis 1968) Autobus hybride (évaluation)
Acide phosphorique PAFC	200	H_3PO_4	Petite centrale (1996) Cogénération (1992-1995) Autobus hybride (1994)
Carbonates fondus MCFC	650	Carbonates de Li et K	Petite centrale (1996) Cogénération (1996) Centrale au charbon (après 2000)
Oxydes solides SOFC	1000	Céramiques Y ₂ O ₃ et ZrO ₂	Cogénération (2002) Centrale au charbon (après 2000) VE commercial (?)
PEMFC	70	Membrane de type Nafion TM	VH petit & moyen (1996) VE (depuis 1994)

Aluminium/Air	20	KOH (aqueux)	VE
Zinc-Air	20	KOH (aqueux)	VE

Pile à Combustible

Pas de recharge (fonctionnement « plus simple »)


Bonne puissance massique (300/500 W/kg)

mais

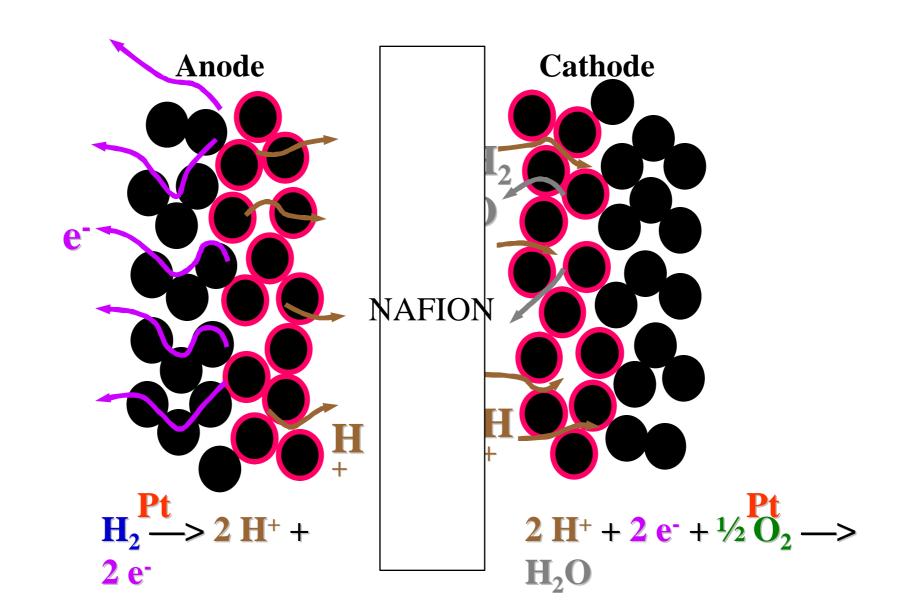
Coût élevé de la membrane (NafionTM) Coût élevé de la séparation bipolaire Nécessite un hydrogène quasi-pur

Le principe de la pile à combustible

Exemple de la Pile à Membrane échangeuse de protons

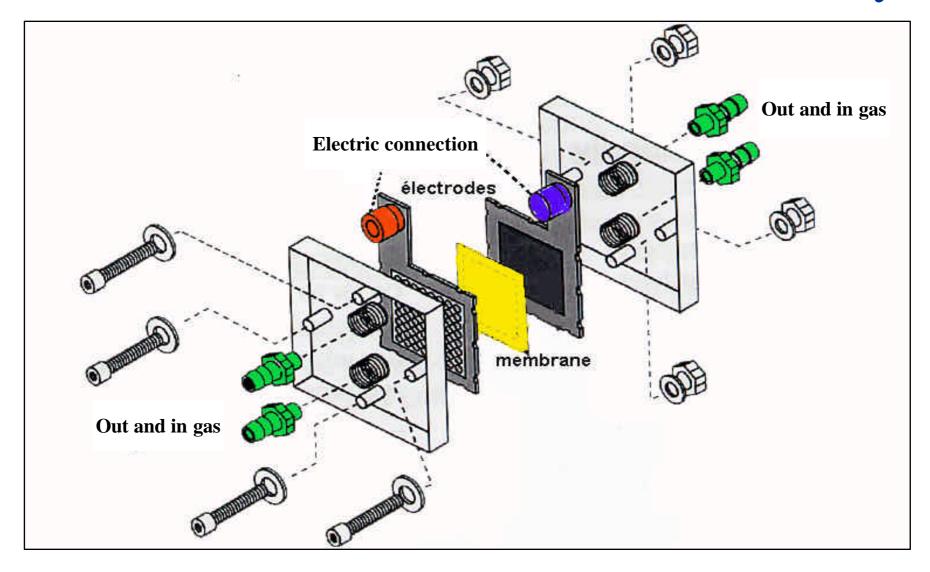
Le Cœur de pile

Exemple de la Pile à Membrane échangeuse de protons


Electrolyte

Membrane polymère perfluoré sulfoné

Zone de diffusion Feutre de carbone

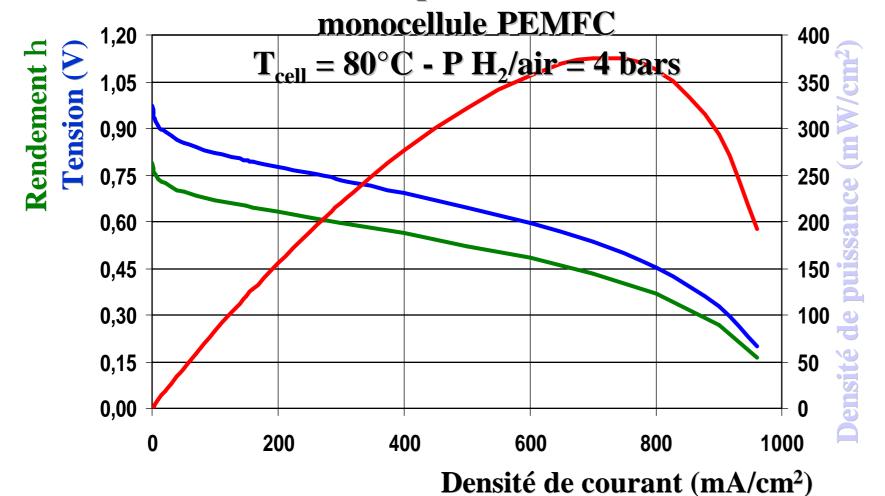

Zone active Carbone platiné

Zone active Carbone platiné **Zone de diffusion** Feutre de carbone

Electrode-membrane-electrode assembly

The membrane is tested with a assembly cell H_2 / O_2 . The polarization curves are drawn with different current density. Maximum active surface : $16~\rm cm^2$

Un peu d'électrochimie


• Anode : $H_2 \longrightarrow 2 H^+ + 2 e^-$

• Cathode : $\frac{1}{2}$ O₂ + 2 H⁺ + 2 e⁻ -> H₂O

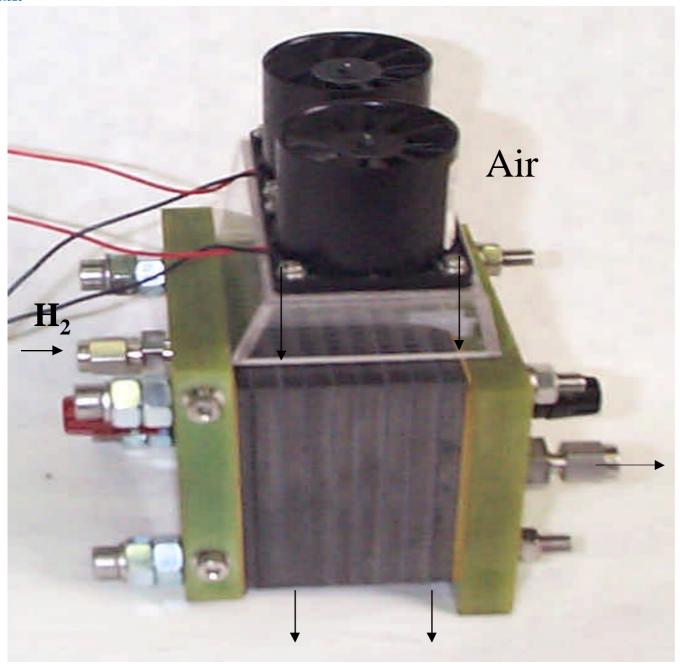
 $V_0 = E_0(O_2) - E_0(H_2) = 1,23 \text{ V (H}_2O \text{ liq.)}$

Rendement de cellule : $h = V/V_0$

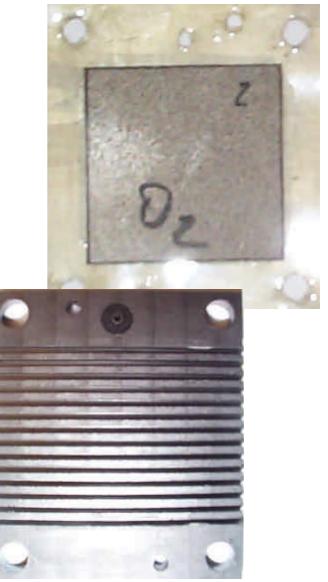
Courbe de polarisation d'une

Point de fonctionnement standard

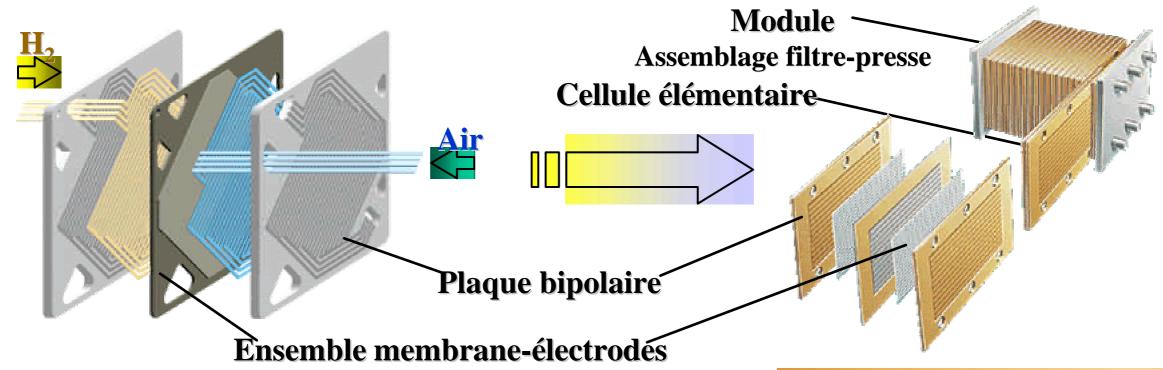
•
$$T = 80 \, ^{\circ}C$$


•
$$i = 600$$

mA/cm²

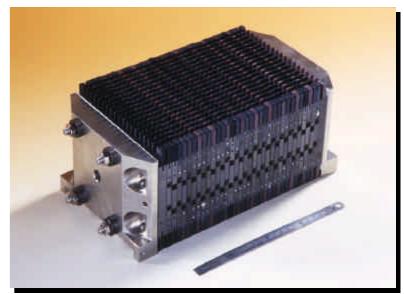

•
$$V_{cell} = 0.6 V$$

h = 50 %


EMEA Stack 25 cm² H₂/Air



L'architecture d'une pile : de la cellule au module Exemple de la Pile à Membrane échangeuse de protons



Composants, électrodes et EME

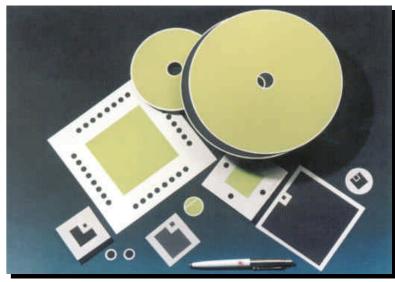
Composants et module de 300 W

Module PEMFC de 1 kW pour véhicule sous-marin

Quelques exemples de Piles à Combustible SOFC planaire

Siemens

Module SOFC planaire de 50 kW


Coulage en bande

Plaques céramiques frittées

Electrolyte zircone

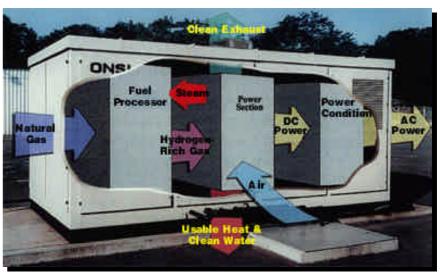
Cellules élémentaires

InDEC (ECN)
Composants pour
SOFC

Quelques exemples de Piles à Combustible MCFC

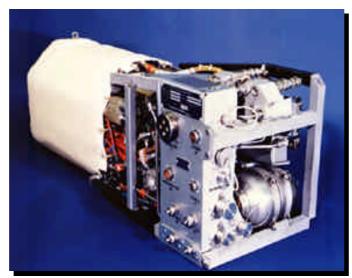
MC-Power:
Unité MCFC de
250 kW

Fuel Cell Energy Unité de 250 kW


Quelques exemples de Piles à Combustible AFC PAFC

ZeGen: Générateur

AFC



Onsi : Cellule PAFC 25C de 200 kW


Les applications spatiales des Piles à Combustible

1981-2001 : La Navette spatiale

International Fuel Cells: Pile AFC de 12 kW

Density Probe

Heater Assembly

Quantify

Pressure

Vessel

Outer Shell

Temperature Sensor

> Pressure Vessel Supports

Fluid Interface

Vac-ion Pump

Insulation

Les grands défis de la pile à combustible

Les 4 principaux verrous (1)

- Réduire le coût des composants critiques et du système intégré
 - Coût actuel d'une PEMFC : 6 000 à 9 000 €kW

Membrane: 150 à 300 €kW

• Electrodes: 3 000 à 6 000 €kW

Plaque bipolaire : 4 000 €kW

• Les prix du marché : <1500 €kW

• Stationnaire: 750 à 1 500 € kW

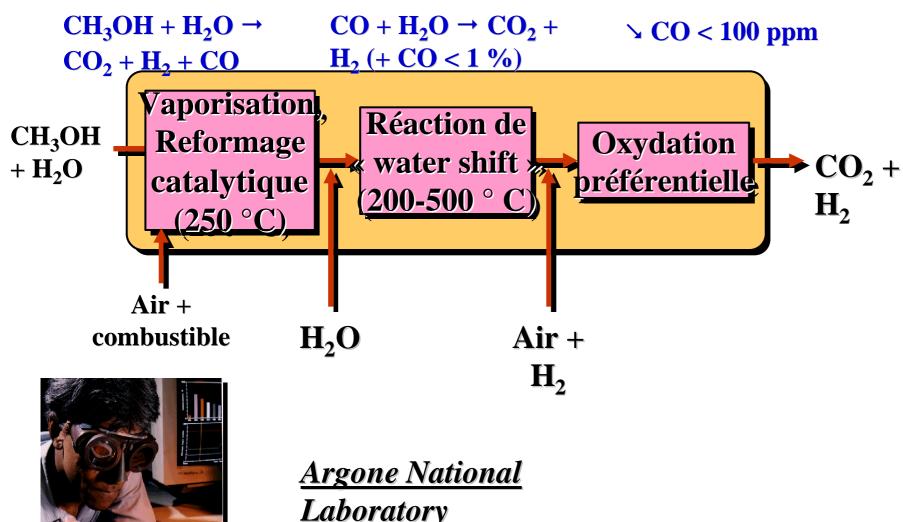
• Transport urbain : 150 à **€**kW

• Automobile : 30 à 50 €kW

Les grands défis de la pile à combustible

Les 4 principaux verrous (2)

- Augmenter les performances
 - Assurer la robustesse, la fiabilité et la durée de vie
 - PEMFC « haute température » (» 200 °C)
 - « Miniaturisation » de la PEMFC pour applications portable
 - SOFC « basse température » (» 400 °C)
 - Assurer la sûreté
 - Stockage du combustible
 - Contrôler l'impact sur l'environnement
 - Choix de la filière de production du combustible
 - Démonter la recyclabilité des composants


Le combustible Hydrogène Quelques chiffres

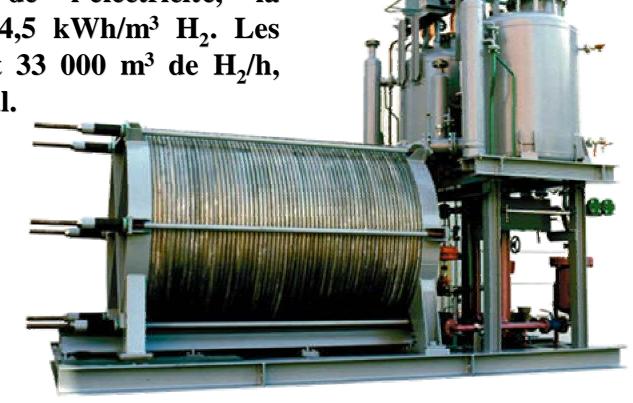
1 kg d'hydrogène, c'est:

- 16 litres à 700 bars
 - 18 kW.h électriques en sortie de pile
 - 1 à 2 jours d'autonomie pour une maison tout confort (hors chauffage)
 - 50-70 km pour un véhicule de classe moyenne à 100 km/h

La production du combustible Le reformage

Exemple du vaporeformage : $C_xH_yO_z + (2x - z)H_2O \leftrightarrows (2x + y/2 - z)H_2 + x CO_2$

Argone National
Laboratory
Développement d'un
reformeur méthanol



Production d'hydrogène à la raffinerie Tosco (Californie)

La production du combustible L'électrolyse

- Deux principaux types d'électrolyse :
 - <u>Électrolyse de NaCl</u>: H₂ coproduit (28 kg de H₂ par tonne de Cl₂) donne 3 % du H₂ mondial. En Europe, plus de la moitié de l'hydrogène distribué par les producteurs de gaz industriels provient de cette source.
 - Électrolyse de H₂O : pas actuellement rentable. La rentabilité est liée au coût de l'électricité, la consommation est de l'ordre de 4,5 kWh/m³ H₂. Les capacités mondiales installées, soit 33 000 m³ de H₂/h, donnent environ 1 % du H₂ mondial.

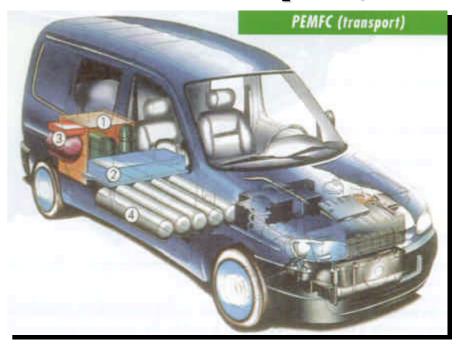
Norsk Hydro:
Electrolyseur

Le stockage du combustible Réservoirs sous pression

• **But**:

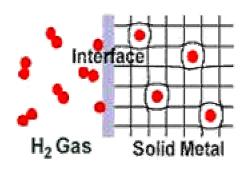

- Concevoir et qualifier un réservoir hydrogène haute pression à 700 bar.

• Deux solutions technologiques:


- Vessie aluminium + bobinage composite,
- Matériau thermo-plastique simple ou composite + bobinage composite.

La qualification :

- Analyse de fiabilité, simulation numérique
- Etude de fragilisation,
- Test de chute,
- Test d'éclatement : résistance > 1700 bar,
- Test de perforation : tir à balles réelles,
- Crash test.



Réservoir d'hydrogène hyperbar (vessie aluminium + composite)

Le projet « Hydro-Gen » : véhicule Berlingo PEMFC

Le stockage du combustible Les hydrures métalliques

$$MeH_x + Q = x/2 H_2 + Me$$

Exemples:

- Métaux : Mg, Pd ...
- Composés intermétalliques : MgNi,

Composés hydrures

<u>GFE</u> : réservoirs d'hydrures métalliques

• Caractéristiques

<u>hydrure de Mg</u> <u>hydrure de LaNi₅</u>

 Capacite massique d'absorption 	7,6 %	1,5 %
• Température d'équilibre (1 bar)	279 °C	15 °C
 Sensibilité aux impuretés dans H₂ 	O_2, H_2O	O_2, H_2O, CO

• Cinétique absorption/désorption très lente très rapide

Systèmes Redox

- Produire oxydant et réducteur fluides par électrolyse et les stocker en réservoirs séparés, les ré-injecter dans le système pour produire de l'électricité.
- Hydrogène -chlore
- Zinc-chlore
- Zinc- Brome: Zn/Zn++ // Br-/Br3-, R4N+
- Système Vanadium : $vo_2^+/vo^{++}//vo^+/v^{++}$
- Sulfure -Brome : $Na_2S_x/S^= // Br^-/Br_3^-$

Batteries Redox à circulation

CONCLUSIONS

• Les Batteries et les condensateurs sont les systèmes les plus répandus de stockage de l'énergie électrique.

• Temps de stockage:

• <0,1 s: Condensateurs

• < 10 mn: Supercondensateurs

• 10mn<t<1mois: Batteries

• <1 jour : Systèmes Redox

• < 1 semaine : Electrolyse/PAC